Spatial Prediction of Landslide Hazard Using Fuzzy k-means and Dempster-Shafer Theory
نویسندگان
چکیده
Landslide databases and input parameters used for modeling landslide hazard often contain imprecisions and uncertainties inherent in the decision-making process. Dealing with imprecision and uncertainty requires techniques that go beyond classical logic. In this paper, methods of fuzzy k -means classification were used to assign digital terrain attributes to continuous landform classes whereas the Dempster-Shafer theory of evidence was used to represent and manage imprecise information and to deal with uncertainties. The paper introduces the integration of the fuzzy k -means classification method and the Dempster-Shafer theory of evidence to model landslide hazard in roaded and roadless areas illustrated through a case study in the Clearwater National Forest in central Idaho, USA. Sample probabilistic maps of landslide hazard potential and uncertainties are presented. The probabilistic maps are intended to help decisionmaking in effective forest management and planning.
منابع مشابه
تحلیل خطر زمین لغزش در حوزه آبخیز ماسوله با استفاده از تئوری دمپستر- شیفر (Dempster-Shafer) و GIS
Watersheds are changed positively or negatively as biotic and abiotic factors in natural circumstances impact them. Landslides, as a physical factor, one of the negative consequences on these catchments. Masoleh watershed, in North of Iran, is one of the susceptible areas to explode the natural landslides. In other to landslide hazard zonation, the Dempster-Shafer model is which is used has 14 ...
متن کاملComparing Bivariate and Multivariate Methods in Landslide Sustainability Mapping: A Case Study of Chelchay Watershed
1- INTRODUCTION In the last decades, due to human interventions and the effect of natural factors, the occurrence of landslide increased especially in the north of Iran, where the amount of rainfall is suitable for the landslide occurrence. In order to manage and mitigate the damages caused by landslide, the potential landslide-prone areas should be identified. In landslide susceptibili...
متن کاملA NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY
In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...
متن کاملREGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY
Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...
متن کاملIntegrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard
A robust method for spatial prediction of landslide hazard in roaded and roadless areas of forest is described. The method is based on assigning digital terrain attributes into continuous landform classes. The continuous landform classification is achieved by applying a fuzzy k-means approach to a watershed scale area before the classification is extrapolated to a broader region. The extrapolat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trans. GIS
دوره 9 شماره
صفحات -
تاریخ انتشار 2005